Overcoming the Barriers to Implementing Value-Based Health Care

Harvard School of Dental Medicine Leadership Forum

September 2018

Robert S. Kaplan, Senior Fellow and Marvin Bower Professor of Leadership Development, Emeritus
The central goal in health care must be **value for patients**, not access, volume, convenience, quality, or cost containment.

\[
\text{Value} = \frac{\text{Health outcomes that matter to patients}}{\text{Costs of delivering those outcomes}}
\]

The unit of analysis for creating and measuring value is the treatment of a patient’s **medical condition** over a complete **cycle of care**.
Barriers to implementing Value-Based Health Care

1. **Fragmentation** of care delivery by medical specialty

2. Lack of measurement of **outcomes** that matter to patients

3. Distorted measurement of **costs** at the patient level; confusion between charges and costs

4. Fee-for-service payments that reward **volume** but not **value**
How to overcome the barriers to VBHC

Problem #1: Fragmentation of care delivery by medical specialty

Solution: Organize multi-disciplinary teams around the patient’s medical condition
How we organize today for Diabetes

Primary Care Physician

- Laboratory
- Podiatry
- Psychiatrist/Psychologist
- Social Worker
- Nutritionist
- Outpatient Cardiology
- Diabetes Nurse Education
- Outpatient Endocrinologist
- Outpatient Neurologist
- Inpatient Cardiology
- Inpatient Endocrinology
- Inpatient Vascular Surgery
- Vascular Surgeon
- Ophthalmologist
- Kidney Dialysis
- Laser Eye Surgery
Diabetes (NL): An IPU for Type-1 Diabetes

Multi-Disciplinary Team

- Physician Specialists
- Nurses
- Dieticians
- Psychologists
- Care Managers
- VCare IT Platform
- Housed within Single Facility
Diabetes Type-1 Diabetes Care Team

Achievements:

1. High percentage of patients with HbA1c levels < 7.5%
2. Lowest rate (<3%) of hospital admissions in Netherlands for Type-1 Diabetes patients
3. Significant reduction in annual cost of care
4. Highest patient satisfaction (9.5/10) rating in NL
Organize Care Around Patient Medical Conditions
Head & Neck Cancer Care at MD Anderson

Old Model:
Organize by Specialty and Discrete Service

Source: Porter, Michael E., Jain, Sachin, The University of Texas MD Anderson Cancer Center: Interdisciplinary Cancer Care, February 26, 2013.
Organize Care Around Patient Medical Conditions
Head & Neck Cancer Care at MD Anderson

Old Model:
Organize by Specialty and Discrete Service

Current Model:
Organize into Integrated Practice Units (IPUs) Around Conditions

Source: Porter, Michael E., Jain, Sachin, The University of Texas MD Anderson Cancer Center: Interdisciplinary Cancer Care. February 26, 2013.
Why IPUs: Three Compelling Reasons

1. Volume

Mortality rate of low birth weight infants in Germany

- Five large centers: 15.0%
- All other hospitals: 33.3%

26-27 weeks gestational age

< 26 weeks gestational age

- Five large centers: 8.9%
- All other hospitals: 11.4%

2. Multi-Disciplinary Team

3. Cycle of Care

- Possible need for procedure
- Shared decision making
- Pre-procedure testing
- Pre-procedure testing

Outcome and cost measures
How to overcome the barriers to VBHC

Problem #2: Lack of measurement of outcomes that matter to patients

Solution: Measure and communicate outcomes by medical condition
Measure Outcomes for a Patient’s Medical Condition

- **Patient Initial Conditions**
- **Processes**
 - Protocols, Quality, Safety, Compliance Guidelines & Checklists
- **Output Indicators**
 - PSA, HgA1b levels, Gleason score, surgical margin, Infection rates, Readmission rates, length-of-stay
- **Inputs**
 - Staff certification, facility standards, JCAHO accreditation

Patient Experience/Engagement
Why does health care focus so much on quality and compliance metrics rather than outcome metrics?

Accountants’ desire for precision:
“If you can’t measure what you want, want what you can measure!”
Measure Outcomes that Matter to Patients
M. Porter, NEJM Dec 2010

Tier 1
Health Status Achieved or Retained
- **Survival**
 - Mortality

Tier 2
Patient's Experience during Care Cycle
- **Degree of health/recovery**
 - Clinical status achieved
 - Functional status achieved
 - Time to care completion and recovery

Tier 3
Sustainability of Health
- **Time to recovery and return to normal activities**
 - Care-related pain/discomfort
 - Complications
 - Reintervention/Readmission
- **Sustainability of health/recovery and nature of recurrences**
 - Long-term clinical status
 - Long-term functional status
- **Long-term consequences of therapy (e.g., care-induced illnesses)**
 - Long-term consequences of therapy
Outcome Measures for Prostate Cancer at Martini Klinik, Hamburg

<table>
<thead>
<tr>
<th>Clinical Outcomes</th>
<th>Patient Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of Stay</td>
<td>Mortality</td>
</tr>
<tr>
<td>Post-surgery PSA level (annually)</td>
<td>Patient-reported erectile function (Int’l Index of Erectile Function)</td>
</tr>
<tr>
<td>Tumor volume</td>
<td>Patient-reported urinary function (Int’l Prostate Symptom Score)</td>
</tr>
<tr>
<td>High-grade cancer volume</td>
<td>Patient-reported general quality of life (European Cancer QLQ-C30 Survey)</td>
</tr>
<tr>
<td>Number of positive lymph nodes</td>
<td>Incontinence (ICS Score)</td>
</tr>
<tr>
<td>Positive surgical margin</td>
<td>Surgical complications up to three months post-op (Clavien/Dindo)</td>
</tr>
<tr>
<td></td>
<td>Radiotherapy complications</td>
</tr>
<tr>
<td></td>
<td>Metastasis</td>
</tr>
</tbody>
</table>
Outcomes Measurement at Martini Klinik Prostate Cancer Surgery Center in Hamburg

• Outcomes data measured pre-surgery, at discharge from MK, and, post-discharge, 3 months, 1 year, 2 years, and 3 years.

• 1,200 surveys per month; 90% return rate (multiple phone reminders)

• Data base on 20,000 prostate cancer patients

• Now collecting molecular genetic data for every tumor tissue sample
MK clinicians participate in a semi-annual meeting to compare clinical and patient outcomes by surgeon

- CEO/Urology Department Chairman, at one meeting, learns that his incidence of positive surgical margins had increased from 5% to 8%.

- He enters training with junior surgeons who had better performance.

- His subsequent incidence of positive margins dropped to 3.5%.
Prostate Cancer Outcomes in Germany

5 year disease specific survival

- Average hospital: 94%
- Best hospital: 95%
Martini Klinik Outcomes versus the average German hospital

- **5 years disease specific survival**
 - Average hospital: 94%
 - Best hospital: 95%

- **Severe erectile dysfunction**
 - Average hospital: 75.5%
 - Best hospital: 17.4%

- **Incontinence**
 - Average hospital: 43.3%
 - Best hospital: 9.2%

Percentage of patients treated
ICHOM (International Consortium for Health Outcomes Measurement) has developed Standard Sets, covering 59% of the disease burden

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11. Depression and Anxiety*</td>
<td>12. Advanced Prostate Cancer*</td>
<td>18. Colorectal Cancer*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>19. Overactive Bladder</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20. Craniofacial Microsomia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>21. Inflammatory Bowel Disease</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Burden of Disease Covered:

- 18%
- 35%
- 45%
- 59%

* Published Thus Far in Peer-Reviewed Journals (14)

Learn more about ICHOM at www.ichom.org
How to overcome the Barriers to VBHC

Problem #3: Distorted measurement of costs at the patient level; confusion between charges and costs

Solution: Use Time-Driven Activity-Based Costing (TDABC) to measure and improve costs across a medical condition’s complete cycle of care.
Time-Driven Activity-Based Costing (TDABC)

<table>
<thead>
<tr>
<th>Step</th>
<th>Process</th>
<th>Identify</th>
<th>Determine Care Process</th>
<th>Calculate Cost Rates</th>
<th>Consumables</th>
</tr>
</thead>
</table>
| 1 | | • all activities performed over the care cycle
 | | • who performs each activity
 | | • length of time for each activity | |
| 2 | | • cost per unit of time for each type of personnel and equipment |
| 3 | | • cost of devices, supplies, and drugs used in the care cycle |
Measuring Costs Correctly
Develop process maps for the care cycle

Level 1: Overall care cycle

- Map 1: Surgical consultation
- Map 2: Pre-operative testing
- Map 3: Day of surgery pre-operative prep
- Map 4: Operation
- Map 5: Post-anesthesia care unit
- Map 6: Discharge
- Map 7: Rehabilitation
- Map 8: Follow-up visit

Level 2: Studied care cycle

- Map 1: Surgical consultation
- Map 2: Pre-operative testing
- Map 3: Day of surgery pre-operative prep
- Map 4: Operation
- Map 5: Post-anesthesia care unit
- Map 6: Discharge
- Map 7: Rehabilitation
- Map 8: Follow-up visit

Level 3: Process maps for studied care cycle

- Map 2
TDABC Step 1: Clinical and administrative teams work collaboratively to identify:

- **Process-Steps:** All the administrative and clinical process-steps used over a patient’s complete cycle of care for a medical condition

- **Resources:** personnel, equipment, consumable medicines and supplies – used at each process step

- **Time Estimates:** The personnel and equipment time used at each process step for that patient
Calculate the Capacity Cost Rates (CCR)

Data are illustrative

<table>
<thead>
<tr>
<th>Personnel Capacity Cost Rate</th>
<th>Surgeon</th>
<th>Physician Assistant</th>
<th>RN</th>
<th>X-Ray Tech</th>
<th>Scribe</th>
<th>Office Assistant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Clinical Costs</td>
<td>$546,400</td>
<td>$120,000</td>
<td>$100,000</td>
<td>$64,000</td>
<td>$51,000</td>
<td>$61,000</td>
</tr>
<tr>
<td>Personnel Capacity (minutes)</td>
<td>91,086</td>
<td>89,086</td>
<td>89,086</td>
<td>89,086</td>
<td>89,086</td>
<td>89,086</td>
</tr>
<tr>
<td>Personnel Capacity Cost Rate</td>
<td>$6.00</td>
<td>$1.35</td>
<td>$1.12</td>
<td>$0.72</td>
<td>$0.57</td>
<td>$0.68</td>
</tr>
</tbody>
</table>
We compute total patient-level care costs by multiplying capacity cost rates by process times and summing across each patient’s cycle of care.

<table>
<thead>
<tr>
<th>Initial consultation</th>
<th>Minutes</th>
<th>Cost/minute</th>
<th>*Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD X₁ Y₁</td>
<td>136.13</td>
<td>68.04</td>
<td>266.08</td>
</tr>
<tr>
<td>RN X₂ Y₂</td>
<td></td>
<td>6.17</td>
<td></td>
</tr>
<tr>
<td>CA X₃ Y₃</td>
<td></td>
<td>15.74</td>
<td></td>
</tr>
<tr>
<td>ASR X₄ Y₄</td>
<td></td>
<td></td>
<td>266.08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surgical procedure</th>
<th>Minutes</th>
<th>Cost/minute</th>
<th>*Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD X₁ Y₁</td>
<td>584.99</td>
<td>603.89</td>
<td>1752.15</td>
</tr>
<tr>
<td>Anes. X₂ Y₂</td>
<td></td>
<td>136.29</td>
<td></td>
</tr>
<tr>
<td>RN X₃ Y₃</td>
<td></td>
<td>97.82</td>
<td></td>
</tr>
<tr>
<td>Tech X₄ Y₄</td>
<td></td>
<td>329.16</td>
<td></td>
</tr>
<tr>
<td>OR X₅ Y₅</td>
<td></td>
<td></td>
<td>1752.15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Follow-up or post-operative visit</th>
<th>Minutes</th>
<th>Cost/minute</th>
<th>*Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD X₁ Y₁</td>
<td>55.19</td>
<td>13.61</td>
<td>73.66</td>
</tr>
<tr>
<td>RN X₂ Y₂</td>
<td></td>
<td>3.09</td>
<td></td>
</tr>
<tr>
<td>CA X₃ Y₃</td>
<td></td>
<td>1.77</td>
<td></td>
</tr>
</tbody>
</table>

Source: Meg Abbott, MD & John Meara, MD Boston Children’s Hospital
How does TDABC help providers manage their costs

Process Improvement and Redesign

- **Eliminate** process steps and variations that **do not** contribute to improved patient outcomes
- **Redesign** processes to **reduce waste and idle time**
- **Optimize** processes and interventions over a complete cycle of care
- **All clinicians work at the “top-of-their license”**

Pricing

- Understand costs over the full care cycle to prepare for **bundled payment** contracts
How to overcome the Barriers to VBHC

Problem #4: Fee-for-service payments that reward volume but not value

Solution: Develop Bundled Payments to compensate all providers treating the medical condition
The Movement to Value-Based Payment Models

Fee for Service

- Pay for care for a **life**

Capitation/Population Based Payments

- Pay for care for a **life**
- **Capitation/Population Based Payments**
- Both capitation (ACOs) and bundled payments create positive incentives to **reduce costs** and give clinicians flexibility in the provision of care

Bundled Payments

- Pay for care for **conditions** (acute, chronic) and **primary care segments**

- **Bundled Payments**
- Capitation at the hospital or system level can **coexist** with bundle payment at the condition level
A Value-Based Bundle Payment, ideally, should have the following five components.

1. A single payment that covers **all the care** required to treat a **patient’s medical condition**
 - a time-based payment ($/month) for treating a chronic condition or population segment

2. **Contingent** on achieving good condition-specific **outcomes**, including care guarantees

3. **Risk adjusted**, or covering a **defined patient group** in terms of complexity
 - (80/20 rule)

4. Specified **limits of responsibility** for unrelated care, and **stop loss** provisions to mitigate against outliers and catastrophic events

5. A price that provides a fair margin for delivering **effective and efficient care**
 - Provider is at risk for difference between **bundled price** and **actual cost** of all included services required to treat the condition
Bundled Payment Align with Value

- **Accountability** for **good outcomes** condition by condition
- Drives the formation of **multidisciplinary care** (IPUs) to deliver **good outcomes**
- **Risk factors** by condition are **well understood**
- Strong incentives to **improve efficiency**, but not at the expense of **quality**

Compete on Value
- Expands and informs **patient choice**
- Providers motivated to focus on **areas of excellence**
- Opens up **competition and transparency on value**, condition by condition
Creating a Value-Based Health Care System

1. Organize **Multi-disciplinary teams** around the patient’s medical condition

 • For primary and preventive care, the multi-disciplinary team serves a **distinct patient segment**

2. Measure and communicate **Outcomes** by medical condition

3. Measure and improve **Costs** by medical condition

4. Develop **Bundled Payments** to compensate providers for treating the medical condition